Latest Maths NCERT Books Solution | ||||||
---|---|---|---|---|---|---|
6th | 7th | 8th | 9th | 10th | 11th | 12th |
Content On This Page | ||
---|---|---|
Example 1 to 6 (Before Exercise 4.1) | Exercise 4.1 | Example 7 & 8 - Miscellaneous Examples |
Miscellaneous Exercise on Chapter 4 |
Chapter 4 Complex Numbers And Quadratic Equations
This solutions page offers comprehensive support for Chapter 4: Complex Numbers and Quadratic Equations, a vital chapter in the Class 11 Mathematics curriculum based on the Latest NCERT (2024-25) textbook. This chapter introduces students to a fascinating extension of the real number system and equips them with tools to solve equations that were previously unsolvable within the realm of real numbers. All concepts and exercises covered here are in strict accordance with the rationalized syllabus effective for the current academic session.
The foundation of this chapter lies in understanding the necessity and definition of complex numbers. The solutions begin by meticulously introducing the fundamental concept of the imaginary unit, denoted by $\boldsymbol{i}$ (iota), which is defined as the solution to the equation $x^2 = -1$, specifically $\boldsymbol{i = \sqrt{-1}}$. Consequently, $\boldsymbol{i^2 = -1}$, $i^3 = -i$, $i^4 = 1$, and the solutions explain how to evaluate higher integral powers of $i$ using this cyclic property. Building on this, a complex number, typically denoted by $z$, is formally defined in the standard form $\mathbf{z = a + ib}$, where $a$ and $b$ are real numbers. The solutions clarify how to identify the real part of $z$, denoted as $\text{Re}(z) = a$, and the imaginary part of $z$, denoted as $\text{Im}(z) = b$.
A significant portion of the solutions is dedicated to the Algebra of Complex Numbers. Through numerous solved examples, students are guided through the procedures for performing basic arithmetic operations:
- Addition: $(a+ib) + (c+id) = (a+c) + i(b+d)$
- Subtraction: $(a+ib) - (c+id) = (a-c) + i(b-d)$
- Multiplication: $(a+ib)(c+id) = (ac-bd) + i(ad+bc)$
- Division: $\frac{a+ib}{c+id}$ (where $c+id \neq 0$). This is achieved by multiplying both the numerator and the denominator by the conjugate of the denominator, $c-id$, to obtain a real denominator.
The solutions further elaborate on two crucial concepts associated with complex numbers: the Modulus and the Conjugate. The modulus of $z = a+ib$, denoted as $\boldsymbol{|z|}$, represents its distance from the origin in the complex plane and is calculated as $\boldsymbol{|z| = \sqrt{a^2 + b^2}}$. The conjugate of $z$, denoted as $\boldsymbol{\bar{z}}$, is obtained by changing the sign of the imaginary part: $\boldsymbol{\bar{z} = a - ib}$. Solutions illustrate the calculation of these values and explore their important properties, such as $|z_1 z_2| = |z_1| |z_2|$, $|\frac{z_1}{z_2}| = \frac{|z_1|}{|z_2|}$, $\overline{z_1 \pm z_2} = \bar{z_1} \pm \bar{z_2}$, $\overline{z_1 z_2} = \bar{z_1} \bar{z_2}$, $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\bar{z_1}}{\bar{z_2}}$, and $z\bar{z} = |z|^2$. Methods for finding the multiplicative inverse ($z^{-1}$) of a non-zero complex number using the conjugate ($z^{-1} = \frac{\bar{z}}{|z|^2}$) are also clearly demonstrated.
Visualizing complex numbers is key, and the solutions explain the representation of complex numbers as points in a two-dimensional plane called the Argand Plane or Complex Plane. This leads to the introduction of the Polar (or Trigonometric) Form of a complex number: $\mathbf{z = r(\cos\theta + i \sin\theta)}$. Here, $\boldsymbol{r = |z|}$ is the modulus, and $\boldsymbol{\theta}$ is the argument (or amplitude) of $z$, representing the angle made by the line joining the origin to the point $z$ with the positive real axis. The solutions provide detailed methods for converting a complex number from the standard form ($a+ib$) to its polar form, including the crucial steps for finding the principal argument $\theta$, which typically lies in the interval $(-\pi, \pi]$.
Finally, the chapter revisits Quadratic Equations of the form $\mathbf{ax^2 + bx + c = 0}$, where $a, b, c$ are real numbers and $a \neq 0$. The solutions specifically address the scenario where the discriminant, $D = b^2 - 4ac$, is negative ($D < 0$). In such cases, the roots are complex and conjugate to each other. The solutions demonstrate how to apply the familiar quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ to find these complex roots, expressing the square root of the negative discriminant in terms of the imaginary unit $i$ (e.g., $\sqrt{-k} = i\sqrt{k}$ for $k>0$). Depending on the scope, methods for finding the square root of a complex number itself might also be detailed. By thoroughly utilizing these solutions, students can gain proficiency in performing algebraic operations with complex numbers, understand their geometric interpretation and polar representation, and confidently solve quadratic equations that yield complex roots.
Example 1 to 6 (Before Exercise 4.1)
Example 1: If $4x + i(3x \;–\; y) = 3 + i(– 6)$ , where x and y are real numbers, then find the values of x and y.
Answer:
Given:
The equation $4x + i(3x – y) = 3 + i(– 6)$, where $x, y \in \mathbb{R}$.
To Find:
The values of $x$ and $y$.
Solution:
We are given the equation:
$4x + i(3x – y) = 3 + i(– 6)$
For two complex numbers to be equal, their real parts must be equal and their imaginary parts must be equal.
Equating the real parts:
$4x = 3$
... (i)
Equating the imaginary parts:
$3x - y = -6$
... (ii)
From equation (i), we can find the value of $x$:
$x = \frac{3}{4}$
Now, substitute the value of $x$ into equation (ii):
$3\left(\frac{3}{4}\right) - y = -6$
$\frac{9}{4} - y = -6$
$-y = -6 - \frac{9}{4}$
$-y = -\frac{24}{4} - \frac{9}{4}$
$-y = -\frac{33}{4}$
$y = \frac{33}{4}$
Thus, the values of $x$ and $y$ are $\mathbf{x = \frac{3}{4}}$ and $\mathbf{y = \frac{33}{4}}$.
Example 2: Express the following in the form of $a \;+\; bi$:
(i) $(-5i) \left( \frac{1}{8}i \right)$
(i) $(-i) (2i) \left( -\frac{1}{8}i\right)^{3}$
Answer:
To Express:
The given expressions in the form of $a + bi$.
Solution (i):
We need to express $(-5i) \left( \frac{1}{8}i \right)$ in the form $a + bi$.
$(-5i) \left( \frac{1}{8}i \right) = (-5) \times \left(\frac{1}{8}\right) \times (i \times i)$
$= -\frac{5}{8} \times i^2$
Since $i^2 = -1$, we have:
$= -\frac{5}{8} \times (-1)$
$= \frac{5}{8}$
To express this in the form $a + bi$, we can write it as:
$\frac{5}{8} = \frac{5}{8} + 0i$
Thus, $(-5i) \left( \frac{1}{8}i \right)$ in the form $a + bi$ is $\mathbf{\frac{5}{8} + 0i}$.
Solution (ii):
We need to express $(-i) (2i) \left( -\frac{1}{8}i\right)^{3}$ in the form $a + bi$.
First, let's simplify $\left( -\frac{1}{8}i\right)^{3}$:
$\left( -\frac{1}{8}i\right)^{3} = \left(-\frac{1}{8}\right)^3 \times i^3$
$= \left(-\frac{1}{8 \times 8 \times 8}\right) \times i^3$
$= -\frac{1}{512} \times i^3$
Since $i^3 = i^2 \times i = (-1) \times i = -i$, we have:
$= -\frac{1}{512} \times (-i)$
$= \frac{1}{512}i$
Now, substitute this back into the original expression:
$(-i) (2i) \left( -\frac{1}{8}i\right)^{3} = (-i) (2i) \left( \frac{1}{512}i \right)$
$= (-1 \times 2 \times \frac{1}{512}) \times (i \times i \times i)$
$= -\frac{2}{512} \times i^3$
$= -\frac{1}{256} \times i^3$
Again, using $i^3 = -i$:
$= -\frac{1}{256} \times (-i)$
$= \frac{1}{256}i$
To express this in the form $a + bi$, we can write it as:
$\frac{1}{256}i = 0 + \frac{1}{256}i$
Thus, $(-i) (2i) \left( -\frac{1}{8}i\right)^{3}$ in the form $a + bi$ is $\mathbf{0 + \frac{1}{256}i}$.
Example 3: Express $(5 \;–\; 3i)^3$ in the form $a \;+\; bi$.
Answer:
To Express:
$(5 - 3i)^3$ in the form $a + bi$.
Solution:
We need to express $(5 - 3i)^3$ in the form $a + bi$.
We can use the binomial expansion formula $(x-y)^3 = x^3 - 3x^2y + 3xy^2 - y^3$.
Here, $x = 5$ and $y = 3i$.
So, $(5 - 3i)^3 = (5)^3 - 3(5)^2(3i) + 3(5)(3i)^2 - (3i)^3$
Calculate each term:
$(5)^3 = 125$
$3(5)^2(3i) = 3(25)(3i) = 75(3i) = 225i$
$3(5)(3i)^2 = 15(9i^2)$
Since $i^2 = -1$, we have $15(9i^2) = 15(9)(-1) = 15(-9) = -135$
$(3i)^3 = 3^3 i^3 = 27 i^3$
Since $i^3 = i^2 \times i = (-1) \times i = -i$, we have $27 i^3 = 27(-i) = -27i$
Now, substitute these values back into the expansion:
$(5 - 3i)^3 = 125 - 225i + (-135) - (-27i)$
$(5 - 3i)^3 = 125 - 225i - 135 + 27i$
Group the real and imaginary terms:
$(5 - 3i)^3 = (125 - 135) + (-225 + 27)i$
$(5 - 3i)^3 = -10 + (-198)i$
$(5 - 3i)^3 = -10 - 198i$
The expression $(5 - 3i)^3$ in the form $a + bi$ is $\mathbf{-10 - 198i}$. Here, $a = -10$ and $b = -198$.
Example 4: Express $(-\sqrt{3} + \sqrt{-2}) (2\sqrt{3}- i)$ in the form of $a \;+\; bi$
Answer:
To Express:
$(-\sqrt{3} + \sqrt{-2}) (2\sqrt{3}- i)$ in the form $a + bi$.
Solution:
We are given the expression $(-\sqrt{3} + \sqrt{-2}) (2\sqrt{3}- i)$.
First, simplify the term $\sqrt{-2}$. Since $\sqrt{-2} = \sqrt{2 \times -1} = \sqrt{2}\sqrt{-1} = \sqrt{2}i$, the expression becomes:
$(-\sqrt{3} + \sqrt{2}i) (2\sqrt{3}- i)$
Now, multiply the two complex numbers using the distributive property (FOIL):
$(-\sqrt{3} + \sqrt{2}i) (2\sqrt{3}- i) = (-\sqrt{3})(2\sqrt{3}) + (-\sqrt{3})(-i) + (\sqrt{2}i)(2\sqrt{3}) + (\sqrt{2}i)(-i)$
Calculate each term:
$(-\sqrt{3})(2\sqrt{3}) = -2 \times (\sqrt{3} \times \sqrt{3}) = -2 \times 3 = -6$
$(-\sqrt{3})(-i) = \sqrt{3}i$
$(\sqrt{2}i)(2\sqrt{3}) = 2 \times \sqrt{2} \times \sqrt{3} \times i = 2\sqrt{6}i$
$(\sqrt{2}i)(-i) = -\sqrt{2} \times (i \times i) = -\sqrt{2}i^2$
Since $i^2 = -1$, the last term becomes:
$-\sqrt{2}i^2 = -\sqrt{2}(-1) = \sqrt{2}$
Now, combine the terms:
$(-\sqrt{3} + \sqrt{2}i) (2\sqrt{3}- i) = -6 + \sqrt{3}i + 2\sqrt{6}i + \sqrt{2}$
Group the real and imaginary parts:
$= (-6 + \sqrt{2}) + (\sqrt{3} + 2\sqrt{6})i$
The expression $(-\sqrt{3} + \sqrt{-2}) (2\sqrt{3}- i)$ in the form $a + bi$ is $\mathbf{(-6 + \sqrt{2}) + (\sqrt{3} + 2\sqrt{6})i}$.
Here, $a = -6 + \sqrt{2}$ and $b = \sqrt{3} + 2\sqrt{6}$.
Example 5: Find the multiplicative inverse of $2 \;–\; 3i$
Answer:
Given:
The complex number $z = 2 - 3i$.
To Find:
The multiplicative inverse of $2 - 3i$.
Solution:
Let the complex number be $z = 2 - 3i$.
The multiplicative inverse of a complex number $z = a + bi$ is given by the formula:
$z^{-1} = \frac{\overline{z}}{|z|^2}$
where $\overline{z}$ is the conjugate of $z$ and $|z|^2$ is the square of the modulus of $z$.
For $z = 2 - 3i$, the real part is $a = 2$ and the imaginary part is $b = -3$.
The conjugate of $z$ is $\overline{z} = a - bi = 2 - (-3)i = 2 + 3i$.
The square of the modulus of $z$ is $|z|^2 = a^2 + b^2 = (2)^2 + (-3)^2 = 4 + 9 = 13$.
Now, substitute these values into the formula for the multiplicative inverse:
$z^{-1} = \frac{2 + 3i}{13}$
We can write this in the form $a + bi$:
$z^{-1} = \frac{2}{13} + \frac{3}{13}i$
Thus, the multiplicative inverse of $2 - 3i$ is $\mathbf{\frac{2}{13} + \frac{3}{13}i}$.
Alternate Solution:
Let the multiplicative inverse of $z = 2 - 3i$ be $w = x + yi$, where $x$ and $y$ are real numbers.
By the definition of multiplicative inverse, $z \times w = 1$.
$(2 - 3i)(x + yi) = 1$
Expand the left side:
$2(x + yi) - 3i(x + yi) = 1$
$2x + 2yi - 3xi - 3yi^2 = 1$
Since $i^2 = -1$, we have:
$2x + 2yi - 3xi - 3y(-1) = 1$
$2x + 2yi - 3xi + 3y = 1$
Group the real and imaginary terms:
$(2x + 3y) + (2y - 3x)i = 1 + 0i$
For two complex numbers to be equal, their real and imaginary parts must be equal.
Equating the real parts:
$2x + 3y = 1$
... (i)
Equating the imaginary parts:
$-3x + 2y = 0$
... (ii)
From equation (ii), we can express $y$ in terms of $x$:
$2y = 3x$
$y = \frac{3}{2}x$
Substitute this value of $y$ into equation (i):
$2x + 3\left(\frac{3}{2}x\right) = 1$
$2x + \frac{9}{2}x = 1$
Multiply the entire equation by 2 to eliminate the fraction:
$4x + 9x = 2$
$13x = 2$
$x = \frac{2}{13}$
Now, substitute the value of $x$ back into the equation for $y$:
$y = \frac{3}{2}x = \frac{3}{2} \times \frac{2}{13} = \frac{3}{13}$
So, the multiplicative inverse is $w = x + yi = \frac{2}{13} + \frac{3}{13}i$.
The multiplicative inverse of $2 - 3i$ is $\mathbf{\frac{2}{13} + \frac{3}{13}i}$.
Example 6: Express the following in the form $a \;+\; bi$
(i) $\frac{5 \;+\; \sqrt{2}i}{1\;-\;\sqrt{2}i}$
(ii) $i^{-35}$
Answer:
To Express:
The given expressions in the form of $a + bi$.
Solution (i):
We need to express $\frac{5 + \sqrt{2}i}{1 - \sqrt{2}i}$ in the form $a + bi$.
To do this, we multiply the numerator and the denominator by the conjugate of the denominator.
The denominator is $1 - \sqrt{2}i$. The conjugate of the denominator is $1 + \sqrt{2}i$.
$\frac{5 + \sqrt{2}i}{1 - \sqrt{2}i} = \frac{5 + \sqrt{2}i}{1 - \sqrt{2}i} \times \frac{1 + \sqrt{2}i}{1 + \sqrt{2}i}$
Multiply the numerators:
$(5 + \sqrt{2}i)(1 + \sqrt{2}i) = 5(1) + 5(\sqrt{2}i) + (\sqrt{2}i)(1) + (\sqrt{2}i)(\sqrt{2}i)$
$= 5 + 5\sqrt{2}i + \sqrt{2}i + (\sqrt{2})^2 i^2$
$= 5 + (5\sqrt{2} + \sqrt{2})i + 2 i^2$
$= 5 + 6\sqrt{2}i + 2(-1)$
$= 5 + 6\sqrt{2}i - 2$
$= (5 - 2) + 6\sqrt{2}i$
$= 3 + 6\sqrt{2}i$
Multiply the denominators:
$(1 - \sqrt{2}i)(1 + \sqrt{2}i)$ is in the form $(a - bi)(a + bi) = a^2 + b^2$.
Here, $a = 1$ and $b = \sqrt{2}$.
$(1 - \sqrt{2}i)(1 + \sqrt{2}i) = (1)^2 + (\sqrt{2})^2$
$= 1 + 2$
$= 3$
Now, combine the simplified numerator and denominator:
$\frac{5 + \sqrt{2}i}{1 - \sqrt{2}i} = \frac{3 + 6\sqrt{2}i}{3}$
Separate the real and imaginary parts:
$= \frac{3}{3} + \frac{6\sqrt{2}}{3}i$
$= 1 + 2\sqrt{2}i$
Thus, $\frac{5 + \sqrt{2}i}{1 - \sqrt{2}i}$ in the form $a + bi$ is $\mathbf{1 + 2\sqrt{2}i}$.
Solution (ii):
We need to express $i^{-35}$ in the form $a + bi$.
We can write $i^{-35}$ as $\frac{1}{i^{35}}$.
To simplify $i^{35}$, we divide the exponent by 4 and consider the remainder. The powers of $i$ cycle with a period of 4 ($i^1=i, i^2=-1, i^3=-i, i^4=1$).
Divide 35 by 4: $35 = 4 \times 8 + 3$. The remainder is 3.
Therefore, $i^{35} = i^{4 \times 8 + 3} = (i^4)^8 \times i^3 = (1)^8 \times i^3 = 1 \times i^3 = i^3$.
We know that $i^3 = -i$.
So, $i^{-35} = \frac{1}{i^{35}} = \frac{1}{-i}$.
To express $\frac{1}{-i}$ in the form $a + bi$, multiply the numerator and denominator by $i$:
$\frac{1}{-i} = \frac{1}{-i} \times \frac{i}{i}$
$= \frac{i}{-i^2}$
Since $i^2 = -1$, we have $-i^2 = -(-1) = 1$.
$= \frac{i}{1}$
$= i$
To express this in the form $a + bi$, we write it as $0 + 1i$ or simply $0 + i$.
Thus, $i^{-35}$ in the form $a + bi$ is $\mathbf{0 + i}$.
Exercise 4.1
Express each of the complex number given in the Exercises 1 to 10 in the form $a \;+\; bi$.
Question 1. $(5i) \left(-\frac{3}{5} i \right)$
Answer:
We need to express the given complex number in the form $a + bi$.
$(5i) \left(-\frac{3}{5} i \right) = \left(5 \times -\frac{3}{5}\right) \times (i \times i)$
$= (-3) \times i^2$
We know that $i^2 = -1$.
$= -3 \times (-1)$
$= 3$
To express this in the form $a + bi$, we write the imaginary part as $0i$.
$3 = 3 + 0i$
Thus, $(5i) \left(-\frac{3}{5} i \right)$ in the form $a + bi$ is $\mathbf{3 + 0i}$.
Question 2. $i^9 + i^{19}$
Answer:
To Express:
$i^9 + i^{19}$ in the form $a + bi$.
Solution:
We need to express $i^9 + i^{19}$ in the form $a + bi$.
We use the property that powers of $i$ repeat in a cycle of 4: $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$. For any integer $n$, $i^n = i^{n \pmod 4}$ if $n \pmod 4 \neq 0$, and $i^n = 1$ if $n$ is a multiple of 4.
For $i^9$, we divide the exponent 9 by 4:
$9 = 4 \times 2 + 1$
The remainder is 1, so $i^9 = i^1 = i$.
For $i^{19}$, we divide the exponent 19 by 4:
$19 = 4 \times 4 + 3$
The remainder is 3, so $i^{19} = i^3 = -i$.
Now, substitute these simplified values back into the expression:
$i^9 + i^{19} = i + (-i)$
$= i - i$
$= 0$
To express 0 in the form $a + bi$, we write it as:
$0 = 0 + 0i$
Thus, $i^9 + i^{19}$ in the form $a + bi$ is $\mathbf{0 + 0i}$.
Question 3. $i^{-39}$
Answer:
To Express:
$i^{-39}$ in the form $a + bi$.
Solution:
We need to express $i^{-39}$ in the form $a + bi$.
We can write $i^{-39}$ as $\frac{1}{i^{39}}$.
To simplify $i^{39}$, we use the property that powers of $i$ repeat in a cycle of 4. We divide the exponent by 4 and look at the remainder.
Divide 39 by 4:
$39 \div 4$ gives a quotient of 9 and a remainder of 3.
So, $39 = 4 \times 9 + 3$.
Therefore, $i^{39} = i^{4 \times 9 + 3} = (i^4)^9 \times i^3$.
Since $i^4 = 1$, we have $(i^4)^9 = 1^9 = 1$.
So, $i^{39} = 1 \times i^3 = i^3$.
We know that $i^3 = -i$.
Substituting this back into the original expression:
$i^{-39} = \frac{1}{i^{39}} = \frac{1}{-i}$
To express this in the form $a + bi$, we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of $-i$ is $i$.
$\frac{1}{-i} = \frac{1}{-i} \times \frac{i}{i}$
$= \frac{1 \times i}{-i \times i}$
$= \frac{i}{-i^2}$
Since $i^2 = -1$, we have $-i^2 = -(-1) = 1$.
$= \frac{i}{1}$
$= i$
To express $i$ in the form $a + bi$, where $a$ and $b$ are real numbers, we write it as:
$i = 0 + 1i$
Thus, $i^{-39}$ in the form $a + bi$ is $\mathbf{0 + i}$.
Question 4. $3(7 \;+\; i7) \;+\; i (7 \;+\; i7)$
Answer:
To Express:
$3(7 + i7) + i (7 + i7)$ in the form $a + bi$.
Solution:
We are given the expression $3(7 + i7) + i (7 + i7)$.
First, distribute the numbers outside the parentheses:
$3(7 + i7) = 3 \times 7 + 3 \times i7 = 21 + 21i$
$i(7 + i7) = i \times 7 + i \times i7 = 7i + 7i^2$
Substitute $i^2 = -1$ into the second expression:
$7i + 7i^2 = 7i + 7(-1) = 7i - 7$
Now, add the results of the two distributed terms:
$(21 + 21i) + (7i - 7)$
Group the real parts and the imaginary parts:
$= (21 - 7) + (21i + 7i)$
$= (21 - 7) + (21 + 7)i$
$= 14 + 28i$
The expression is in the form $a + bi$, where $a = 14$ and $b = 28$.
Thus, $3(7 + i7) + i (7 + i7)$ in the form $a + bi$ is $\mathbf{14 + 28i}$.
Question 5. $(1 \;–\; i) \;–\; ( –1 \;+\; i6)$
Answer:
To Express:
$(1 - i) - ( –1 + i6)$ in the form $a + bi$.
Solution:
We are given the expression $(1 - i) - ( –1 + i6)$.
To subtract complex numbers, we subtract their corresponding real and imaginary parts:
$(1 - i) - ( –1 + i6) = (1 - (-1)) + (-i - i6)$
Simplify the real part:
$1 - (-1) = 1 + 1 = 2$
Simplify the imaginary part:
$-i - i6 = (-1 - 6)i = -7i$
Combine the real and imaginary parts:
$(1 - i) - ( –1 + i6) = 2 + (-7i)$
$= 2 - 7i$
The expression is in the form $a + bi$, where $a = 2$ and $b = -7$.
Thus, $(1 - i) - ( –1 + i6)$ in the form $a + bi$ is $\mathbf{2 - 7i}$.
Question 6. $\left( \frac{1}{5} +i\frac{2}{5}\right) - \left( 4+i\frac{5}{2}\right)$
Answer:
To Express:
$\left( \frac{1}{5} +i\frac{2}{5}\right) - \left( 4+i\frac{5}{2}\right)$ in the form $a + bi$.
Solution:
We are given the expression $\left( \frac{1}{5} +i\frac{2}{5}\right) - \left( 4+i\frac{5}{2}\right)$.
To subtract complex numbers, we subtract their real parts and their imaginary parts separately.
Let $z_1 = \frac{1}{5} + i\frac{2}{5}$ and $z_2 = 4 + i\frac{5}{2}$.
$z_1 - z_2 = \left(\frac{1}{5} - 4\right) + i\left(\frac{2}{5} - \frac{5}{2}\right)$
First, calculate the difference of the real parts:
$\frac{1}{5} - 4 = \frac{1}{5} - \frac{4 \times 5}{1 \times 5} = \frac{1}{5} - \frac{20}{5} = \frac{1 - 20}{5} = -\frac{19}{5}$
Next, calculate the difference of the imaginary parts:
$\frac{2}{5} - \frac{5}{2}$
The least common multiple of 5 and 2 is 10. Convert the fractions to have a denominator of 10.
$\frac{2}{5} = \frac{2 \times 2}{5 \times 2} = \frac{4}{10}$
$\frac{5}{2} = \frac{5 \times 5}{2 \times 5} = \frac{25}{10}$
So, $\frac{2}{5} - \frac{5}{2} = \frac{4}{10} - \frac{25}{10} = \frac{4 - 25}{10} = -\frac{21}{10}$.
Now, combine the real and imaginary parts:
$\left(\frac{1}{5} - 4\right) + i\left(\frac{2}{5} - \frac{5}{2}\right) = -\frac{19}{5} + i\left(-\frac{21}{10}\right)$
$= -\frac{19}{5} - \frac{21}{10}i$
The expression is in the form $a + bi$, where $a = -\frac{19}{5}$ and $b = -\frac{21}{10}$.
Thus, $\left( \frac{1}{5} +i\frac{2}{5}\right) - \left( 4+i\frac{5}{2}\right)$ in the form $a + bi$ is $\mathbf{-\frac{19}{5} - \frac{21}{10}i}$.
Question 7. $\left[ \left( \frac{1}{3} +i\frac{7}{3}\right)+\left( 4+i\frac{1}{3}\right) \right]-\left( -\frac{4}{3}+i \right)$
Answer:
To Express:
$\left[ \left( \frac{1}{3} +i\frac{7}{3}\right)+\left( 4+i\frac{1}{3}\right) \right]-\left( -\frac{4}{3}+i \right)$ in the form $a + bi$.
Solution:
We are given the expression $\left[ \left( \frac{1}{3} +i\frac{7}{3}\right)+\left( 4+i\frac{1}{3}\right) \right]-\left( -\frac{4}{3}+i \right)$.
First, we simplify the expression inside the square brackets by adding the two complex numbers:
$\left( \frac{1}{3} +i\frac{7}{3}\right)+\left( 4+i\frac{1}{3}\right) = \left(\frac{1}{3} + 4\right) + i\left(\frac{7}{3} + \frac{1}{3}\right)$
Calculate the real part: $\frac{1}{3} + 4 = \frac{1}{3} + \frac{12}{3} = \frac{1+12}{3} = \frac{13}{3}$
Calculate the imaginary part: $\frac{7}{3} + \frac{1}{3} = \frac{7+1}{3} = \frac{8}{3}$
So, the expression inside the brackets simplifies to $\frac{13}{3} + \frac{8}{3}i$.
Now, subtract the complex number $\left(-\frac{4}{3}+i\right)$ from this result:
$\left(\frac{13}{3} + \frac{8}{3}i\right) - \left(-\frac{4}{3}+1i\right)$
Subtract the real parts: $\frac{13}{3} - \left(-\frac{4}{3}\right) = \frac{13}{3} + \frac{4}{3} = \frac{13+4}{3} = \frac{17}{3}$
Subtract the imaginary parts: $\frac{8}{3}i - 1i = \left(\frac{8}{3} - 1\right)i = \left(\frac{8}{3} - \frac{3}{3}\right)i = \frac{8-3}{3}i = \frac{5}{3}i$
Combining the real and imaginary parts, we get:
$\frac{17}{3} + \frac{5}{3}i$
The expression is in the form $a + bi$, where $a = \frac{17}{3}$ and $b = \frac{5}{3}$.
Thus, $\left[ \left( \frac{1}{3} +i\frac{7}{3}\right)+\left( 4+i\frac{1}{3}\right) \right]-\left( -\frac{4}{3}+i \right)$ in the form $a + bi$ is $\mathbf{\frac{17}{3} + \frac{5}{3}i}$.
Question 8. $(1 \;–\; i)^4$
Answer:
To Express:
$(1 - i)^4$ in the form $a + bi$.
Solution:
We need to express $(1 - i)^4$ in the form $a + bi$.
We can calculate this by first finding $(1 - i)^2$ and then squaring the result.
First, calculate $(1 - i)^2$ using the formula $(x-y)^2 = x^2 - 2xy + y^2$:
$(1 - i)^2 = (1)^2 - 2(1)(i) + (i)^2$
$= 1 - 2i + i^2$
Since $i^2 = -1$, we have:
$= 1 - 2i + (-1)$
$= 1 - 2i - 1$
$= -2i$
Now, we need to calculate $(1 - i)^4 = ((1 - i)^2)^2$. Substitute the value of $(1 - i)^2$:
$((1 - i)^2)^2 = (-2i)^2$
$= (-2)^2 \times (i)^2$
$= 4 \times i^2$
Again, substitute $i^2 = -1$:
$= 4 \times (-1)$
$= -4$
To express the result $-4$ in the form $a + bi$, we write it as:
$-4 = -4 + 0i$
The expression is in the form $a + bi$, where $a = -4$ and $b = 0$.
Thus, $(1 - i)^4$ in the form $a + bi$ is $\mathbf{-4 + 0i}$.
Question 9. $\left( \frac{1}{3}+3i \right)^{3}$
Answer:
To Express:
$\left( \frac{1}{3}+3i \right)^{3}$ in the form $a + bi$.
Solution:
We need to express $\left( \frac{1}{3}+3i \right)^{3}$ in the form $a + bi$.
We use the binomial expansion formula $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$.
Here, $x = \frac{1}{3}$ and $y = 3i$.
Substituting these values into the formula:
$\left( \frac{1}{3}+3i \right)^{3} = \left(\frac{1}{3}\right)^3 + 3\left(\frac{1}{3}\right)^2(3i) + 3\left(\frac{1}{3}\right)(3i)^2 + (3i)^3$
Calculate each term:
$\left(\frac{1}{3}\right)^3 = \frac{1^3}{3^3} = \frac{1}{27}$
$3\left(\frac{1}{3}\right)^2(3i) = 3\left(\frac{1}{9}\right)(3i) = \frac{3}{9}(3i) = \frac{1}{3}(3i) = i$
$3\left(\frac{1}{3}\right)(3i)^2 = 1 \times (3i)^2 = 9i^2$
Since $i^2 = -1$, this term is $9(-1) = -9$.
$(3i)^3 = 3^3 i^3 = 27 i^3$
Since $i^3 = i^2 \times i = (-1) \times i = -i$, this term is $27(-i) = -27i$.
Now, combine these terms:
$\left( \frac{1}{3}+3i \right)^{3} = \frac{1}{27} + i + (-9) + (-27i)$
$= \frac{1}{27} + i - 9 - 27i$
Group the real and imaginary parts:
$= \left(\frac{1}{27} - 9\right) + (i - 27i)$
$= \left(\frac{1}{27} - \frac{9 \times 27}{1 \times 27}\right) + (1 - 27)i$
$= \left(\frac{1}{27} - \frac{243}{27}\right) + (-26)i$
$= \frac{1 - 243}{27} - 26i$
$= -\frac{242}{27} - 26i$
The expression is in the form $a + bi$, where $a = -\frac{242}{27}$ and $b = -26$.
Thus, $\left( \frac{1}{3}+3i \right)^{3}$ in the form $a + bi$ is $\mathbf{-\frac{242}{27} - 26i}$.
Question 10. $\left( -2-\frac{1}{3}i\right)^{3}$
Answer:
To Express:
$\left( -2-\frac{1}{3}i\right)^{3}$ in the form $a + bi$.
Solution:
We need to express $\left( -2-\frac{1}{3}i\right)^{3}$ in the form $a + bi$.
We use the binomial expansion formula $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$.
Here, $x = -2$ and $y = -\frac{1}{3}i$.
Substituting these values into the formula:
$\left( -2-\frac{1}{3}i\right)^{3} = (-2)^3 + 3(-2)^2\left(-\frac{1}{3}i\right) + 3(-2)\left(-\frac{1}{3}i\right)^2 + \left(-\frac{1}{3}i\right)^3$
Calculate each term:
$(-2)^3 = -8$
$3(-2)^2\left(-\frac{1}{3}i\right) = 3(4)\left(-\frac{1}{3}i\right) = 12\left(-\frac{1}{3}i\right) = -\frac{12}{3}i = -4i$
$3(-2)\left(-\frac{1}{3}i\right)^2 = -6\left(\left(-\frac{1}{3}\right)^2 i^2\right) = -6\left(\frac{1}{9} i^2\right)$
Since $i^2 = -1$, we have: $-6\left(\frac{1}{9}(-1)\right) = -6\left(-\frac{1}{9}\right) = \frac{6}{9} = \frac{2}{3}$
$\left(-\frac{1}{3}i\right)^3 = \left(-\frac{1}{3}\right)^3 i^3 = -\frac{1}{27} i^3$
Since $i^3 = i^2 \times i = (-1) \times i = -i$, we have: $-\frac{1}{27} (-i) = \frac{1}{27}i$
Now, combine these terms:
$\left( -2-\frac{1}{3}i\right)^{3} = -8 + (-4i) + \frac{2}{3} + \frac{1}{27}i$
$= -8 - 4i + \frac{2}{3} + \frac{1}{27}i$
Group the real and imaginary parts:
$= \left(-8 + \frac{2}{3}\right) + \left(-4 + \frac{1}{27}\right)i$
Combine the real part: $-8 + \frac{2}{3} = -\frac{8 \times 3}{3} + \frac{2}{3} = \frac{-24 + 2}{3} = -\frac{22}{3}$
Combine the imaginary part: $-4 + \frac{1}{27} = -\frac{4 \times 27}{27} + \frac{1}{27} = \frac{-108 + 1}{27} = -\frac{107}{27}$
So, the expression is:
$-\frac{22}{3} + \left(-\frac{107}{27}\right)i$
$= -\frac{22}{3} - \frac{107}{27}i$
The expression is in the form $a + bi$, where $a = -\frac{22}{3}$ and $b = -\frac{107}{27}$.
Thus, $\left( -2-\frac{1}{3}i\right)^{3}$ in the form $a + bi$ is $\mathbf{-\frac{22}{3} - \frac{107}{27}i}$.
Find the multiplicative inverse of each of the complex numbers given in the Exercises 11 to 13.
Question 11. $4 \;–\; 3i$
Answer:
Given:
The complex number $z = 4 - 3i$.
To Find:
The multiplicative inverse of $4 - 3i$.
Solution:
Let the complex number be $z = 4 - 3i$.
The multiplicative inverse of a non-zero complex number $z = a + bi$ is given by the formula:
$z^{-1} = \frac{\overline{z}}{|z|^2}$
where $\overline{z}$ is the conjugate of $z$ and $|z|^2$ is the square of the modulus of $z$.
For $z = 4 - 3i$, the real part is $a = 4$ and the imaginary part is $b = -3$.
The conjugate of $z$ is $\overline{z} = a - bi = 4 - (-3)i = 4 + 3i$.
The modulus squared of $z$ is $|z|^2 = a^2 + b^2 = (4)^2 + (-3)^2 = 16 + 9 = 25$.
Now, substitute these values into the formula for the multiplicative inverse:
$z^{-1} = \frac{4 + 3i}{25}$
To express this in the form $a + bi$, we separate the real and imaginary parts:
$z^{-1} = \frac{4}{25} + \frac{3}{25}i$
Thus, the multiplicative inverse of $4 - 3i$ is $\mathbf{\frac{4}{25} + \frac{3}{25}i}$.
Question 12. $\sqrt{5}+3i$
Answer:
Given:
The complex number $z = \sqrt{5}+3i$.
To Find:
The multiplicative inverse of $\sqrt{5}+3i$.
Solution:
Let the complex number be $z = \sqrt{5}+3i$.
The multiplicative inverse of a non-zero complex number $z = a + bi$ is given by the formula:
$z^{-1} = \frac{\overline{z}}{|z|^2}$
where $\overline{z}$ is the conjugate of $z$ and $|z|^2$ is the square of the modulus of $z$.
For $z = \sqrt{5}+3i$, the real part is $a = \sqrt{5}$ and the imaginary part is $b = 3$.
The conjugate of $z$ is $\overline{z} = a - bi = \sqrt{5} - 3i$.
The modulus squared of $z$ is $|z|^2 = a^2 + b^2 = (\sqrt{5})^2 + (3)^2 = 5 + 9 = 14$.
Now, substitute these values into the formula for the multiplicative inverse:
$z^{-1} = \frac{\sqrt{5} - 3i}{14}$
To express this in the form $a + bi$, we separate the real and imaginary parts:
$z^{-1} = \frac{\sqrt{5}}{14} - \frac{3}{14}i$
Thus, the multiplicative inverse of $\sqrt{5}+3i$ is $\mathbf{\frac{\sqrt{5}}{14} - \frac{3}{14}i}$.
Question 13. $– i$
Answer:
Given:
The complex number $z = -i$.
To Find:
The multiplicative inverse of $-i$.
Solution:
Let the complex number be $z = -i$.
We can write $z$ in the form $a + bi$: $z = 0 - 1i$.
The multiplicative inverse of a non-zero complex number $z = a + bi$ is given by the formula:
$z^{-1} = \frac{\overline{z}}{|z|^2}$
where $\overline{z}$ is the conjugate of $z$ and $|z|^2$ is the square of the modulus of $z$.
For $z = 0 - 1i$, the real part is $a = 0$ and the imaginary part is $b = -1$.
The conjugate of $z$ is $\overline{z} = a - bi = 0 - (-1)i = 0 + 1i = i$.
The modulus squared of $z$ is $|z|^2 = a^2 + b^2 = (0)^2 + (-1)^2 = 0 + 1 = 1$.
Now, substitute these values into the formula for the multiplicative inverse:
$z^{-1} = \frac{i}{1}$
$z^{-1} = i$
To express this in the form $a + bi$, we write it as:
$z^{-1} = 0 + 1i$
Thus, the multiplicative inverse of $-i$ is $\mathbf{0 + i}$ (or simply $\mathbf{i}$).
Question 14. Express the following expression in the form of $a \;+\; bi$ :
$$\frac{(3\;+\;i\sqrt{5})(3\;-\;i\sqrt{5})}{(\sqrt{3}\;+\;\sqrt{2}i)\;-\;(\sqrt{3}\;-\;i\sqrt{2})}$$
Answer:
Given:
The expression is $\frac{(3\;+\;i\sqrt{5})(3\;-\;i\sqrt{5})}{(\sqrt{3}\;+\;\sqrt{2}i)\;-\;(\sqrt{3}\;-\;i\sqrt{2})}$.
To Express:
The given expression in the form $a + bi$, where $a$ and $b$ are real numbers and $i = \sqrt{-1}$.
Solution:
Let the given expression be E.
$E = \frac{(3\;+\;i\sqrt{5})(3\;-\;i\sqrt{5})}{(\sqrt{3}\;+\;\sqrt{2}i)\;-\;(\sqrt{3}\;-\;i\sqrt{2})}$
First, we simplify the numerator. It is in the form $(a+b)(a-b)$, where $a=3$ and $b=i\sqrt{5}$.
Using the algebraic identity $(a+b)(a-b) = a^2 - b^2$:
Numerator $= (3)^2 - (i\sqrt{5})^2$
Numerator $= 9 - (i^2 \cdot (\sqrt{5})^2)$
We know that $i^2 = -1$ and $(\sqrt{5})^2 = 5$.
Numerator $= 9 - (-1 \cdot 5)$
Numerator $= 9 - (-5)$
Numerator $= 9 + 5 = 14$
Next, we simplify the denominator. We remove the parentheses and combine like terms.
Denominator $= (\sqrt{3}\;+\;\sqrt{2}i)\;-\;(\sqrt{3}\;-\;i\sqrt{2})$
Denominator $= \sqrt{3} + \sqrt{2}i - \sqrt{3} - (-\sqrt{2}i)$
Denominator $= \sqrt{3} + \sqrt{2}i - \sqrt{3} + \sqrt{2}i$
Combine the real parts ($\sqrt{3} - \sqrt{3}$) and the imaginary parts ($\sqrt{2}i + \sqrt{2}i$):
Denominator $= (\sqrt{3} - \sqrt{3}) + (\sqrt{2}i + \sqrt{2}i)$
Denominator $= 0 + 2\sqrt{2}i = 2\sqrt{2}i$
Now, we substitute the simplified numerator and denominator back into the expression E:
$E = \frac{14}{2\sqrt{2}i}$
We can cancel the common factor of 2 in the numerator and denominator:
$E = \frac{\cancel{14}^{7}}{\cancel{2}_{1}\sqrt{2}i} = \frac{7}{\sqrt{2}i}$
To express this complex number in the standard form $a + bi$, we need to remove the imaginary unit $i$ from the denominator. We do this by multiplying the numerator and denominator by $i$ (or by the conjugate of the denominator, which is $-2\sqrt{2}i$; multiplying by $i$ is simpler here).
$E = \frac{7}{\sqrt{2}i} \times \frac{i}{i}$
$E = \frac{7i}{\sqrt{2} \cdot i^2}$
Substitute $i^2 = -1$ in the denominator:
$E = \frac{7i}{\sqrt{2} \cdot (-1)}$
$E = \frac{7i}{-\sqrt{2}} = -\frac{7}{\sqrt{2}}i$
To rationalize the denominator (remove the square root from the denominator), we multiply the numerator and denominator by $\sqrt{2}$:
$E = -\frac{7}{\sqrt{2}}i \times \frac{\sqrt{2}}{\sqrt{2}}$
$E = -\frac{7\sqrt{2}}{(\sqrt{2})^2}i$
$E = -\frac{7\sqrt{2}}{2}i$
The expression is now in the form of a purely imaginary number. The standard form of a complex number is $a + bi$, where $a$ is the real part and $b$ is the imaginary part.
In our result, $-\frac{7\sqrt{2}}{2}i$, the real part is 0.
So, $a = 0$ and $b = -\frac{7\sqrt{2}}{2}$.
Thus, the expression in the form $a + bi$ is:
$0 - \frac{7\sqrt{2}}{2}i$
Example 7 & 8 - Miscellaneous Examples
Example 7: Find the conjugate of $\frac{(3 \;-\; 2i) (2 \;+\; 3i)} {(1 \;+\; 2i) (2 \;-\; i)}$
Answer:
Given:
The complex expression $z = \frac{(3 \;-\; 2i) (2 \;+\; 3i)} {(1 \;+\; 2i) (2 \;-\; i)}$.
To Find:
The conjugate of the given expression in the form $a + bi$.
Solution:
Let the given expression be $z$. We want to find the conjugate of $z$, denoted by $\overline{z}$.
Using the properties of complex conjugates, $\overline{\left(\frac{w_1 w_2}{w_3 w_4}\right)} = \frac{\overline{w_1} \overline{w_2}}{\overline{w_3} \overline{w_4}}$.
So, the conjugate of the given expression is:
$\overline{z} = \frac{\overline{(3 \;-\; 2i)} \overline{(2 \;+\; 3i)}} {\overline{(1 \;+\; 2i)} \overline{(2 \;-\; i)}}$
The conjugates of the individual complex numbers are:
$\overline{3 - 2i} = 3 + 2i$
$\overline{2 + 3i} = 2 - 3i$
$\overline{1 + 2i} = 1 - 2i$
$\overline{2 - i} = 2 + i$
Substituting these conjugates back into the expression for $\overline{z}$:
$\overline{z} = \frac{(3 + 2i) (2 - 3i)} {(1 - 2i) (2 + i)}$
Now, we simplify the numerator and the denominator.
Numerator: $(3 + 2i)(2 - 3i)$
Multiply the terms:
$(3 + 2i)(2 - 3i) = 3(2) + 3(-3i) + (2i)(2) + (2i)(-3i)$
$= 6 - 9i + 4i - 6i^2$
Since $i^2 = -1$, this becomes:
$= 6 - 5i - 6(-1)$
$= 6 - 5i + 6$
$= 12 - 5i$
Denominator: $(1 - 2i)(2 + i)$
Multiply the terms:
$(1 - 2i)(2 + i) = 1(2) + 1(i) + (-2i)(2) + (-2i)(i)$
$= 2 + i - 4i - 2i^2$
Since $i^2 = -1$, this becomes:
$= 2 - 3i - 2(-1)$
$= 2 - 3i + 2$
$= 4 - 3i$
So, the conjugate expression is $\overline{z} = \frac{12 - 5i}{4 - 3i}$.
To express this in the form $a + bi$, we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of $4 - 3i$ is $4 + 3i$.
$\overline{z} = \frac{12 - 5i}{4 - 3i} \times \frac{4 + 3i}{4 + 3i}$
Multiply the numerators:
$(12 - 5i)(4 + 3i) = 12(4) + 12(3i) + (-5i)(4) + (-5i)(3i)$
$= 48 + 36i - 20i - 15i^2$
$= 48 + 16i - 15(-1)$
$= 48 + 16i + 15$
$= 63 + 16i$
Multiply the denominators (using $(a-bi)(a+bi) = a^2+b^2$):
$(4 - 3i)(4 + 3i) = (4)^2 + (3)^2$
$= 16 + 9$
$= 25$
So, $\overline{z} = \frac{63 + 16i}{25}$.
To write this in the form $a + bi$, we separate the real and imaginary parts:
$\overline{z} = \frac{63}{25} + \frac{16}{25}i$
Thus, the conjugate of the given expression in the form $a + bi$ is $\mathbf{\frac{63}{25} + \frac{16}{25}i}$.
Example 8: If $x + iy = \frac{a \;+\; ib}{a \;-\; ib}$ prove that x2 + y2 = 1
Answer:
Given:
The equation $x + iy = \frac{a + ib}{a - ib}$, where $x, y, a, b$ are real numbers and $a - ib \neq 0$.
To Prove:
$x^2 + y^2 = 1$
Proof:
We are given the complex equation:
$x + iy = \frac{a + ib}{a - ib}$
Take the modulus of both sides of the equation. The modulus of a complex number $z = c + id$ is $|z| = \sqrt{c^2 + d^2}$. The modulus of a quotient of complex numbers is the quotient of their moduli, i.e., $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$.
$\left|x + iy\right| = \left|\frac{a + ib}{a - ib}\right|$
... (i)
Calculate the modulus of the left side:
$|x + iy| = \sqrt{x^2 + y^2}$
Calculate the modulus of the numerator on the right side:
$|a + ib| = \sqrt{a^2 + b^2}$
Calculate the modulus of the denominator on the right side:
$|a - ib| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2}$
Substitute these moduli back into equation (i):
$\sqrt{x^2 + y^2} = \frac{\sqrt{a^2 + b^2}}{\sqrt{a^2 + b^2}}$
Assuming $a$ and $b$ are such that $a - ib \neq 0$, the denominator modulus $\sqrt{a^2 + b^2}$ is non-zero. Since the numerator modulus is also $\sqrt{a^2 + b^2}$, and it is non-zero, the fraction simplifies to 1.
$\sqrt{x^2 + y^2} = 1$
Square both sides of the equation:
$(\sqrt{x^2 + y^2})^2 = 1^2$
$x^2 + y^2 = 1$
Thus, we have proved that $x^2 + y^2 = 1$.
Miscellaneous Exercise on Chapter 4
Question 1. Evaluate: $\left[ i^{18} + \left( \frac{1}{i} \right)^{25} \right]^3$
Answer:
To Evaluate:
$\left[ i^{18} + \left( \frac{1}{i} \right)^{25} \right]^3$ in the form $a + bi$.
Solution:
We need to evaluate the expression $\left[ i^{18} + \left( \frac{1}{i} \right)^{25} \right]^3$.
First, let's simplify the terms inside the bracket.
For $i^{18}$: Divide the exponent 18 by 4. $18 = 4 \times 4 + 2$. The remainder is 2. So, $i^{18} = i^2 = -1$.
For $\left( \frac{1}{i} \right)^{25}$: First, simplify $\frac{1}{i}$.
$\frac{1}{i} = \frac{1}{i} \times \frac{-i}{-i} = \frac{-i}{-i^2} = \frac{-i}{-(-1)} = \frac{-i}{1} = -i$
Now, evaluate $(-i)^{25}$.
$(-i)^{25} = (-1)^{25} \times i^{25}$
Since 25 is an odd number, $(-1)^{25} = -1$.
For $i^{25}$: Divide the exponent 25 by 4. $25 = 4 \times 6 + 1$. The remainder is 1. So, $i^{25} = i^1 = i$.
Therefore, $(-i)^{25} = (-1) \times i = -i$.
Now, substitute these simplified values back into the expression inside the bracket:
$i^{18} + \left( \frac{1}{i} \right)^{25} = (-1) + (-i) = -1 - i$
Finally, we need to evaluate the cube of this result:
$(-1 - i)^3$
We can factor out -1:
$(-1 - i)^3 = (-1(1 + i))^3 = (-1)^3 (1 + i)^3 = -1 (1 + i)^3$
Now, we expand $(1 + i)^3$ using the binomial formula $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$:
$(1 + i)^3 = (1)^3 + 3(1)^2(i) + 3(1)(i)^2 + (i)^3$
$= 1 + 3i + 3i^2 + i^3$
Substitute $i^2 = -1$ and $i^3 = -i$:
$= 1 + 3i + 3(-1) + (-i)$
$= 1 + 3i - 3 - i$
Combine the real and imaginary parts:
$= (1 - 3) + (3i - i)$
$= -2 + 2i$
Now, multiply this result by -1:
$(-1)(1 + i)^3 = -1(-2 + 2i)$
$= (-1)(-2) + (-1)(2i)$
$= 2 - 2i$
The expression is in the form $a + bi$, where $a = 2$ and $b = -2$.
Thus, the evaluation of $\left[ i^{18} + \left( \frac{1}{i} \right)^{25} \right]^3$ in the form $a + bi$ is $\mathbf{2 - 2i}$.
Question 2. For any two complex numbers z1 and z2 , prove that
Re (z1 z2 ) = Re z1 Re z2 – Imz1 Imz2
Answer:
Given:
Two complex numbers $z_1$ and $z_2$.
To Prove:
$Re (z_1 z_2 ) = Re z_1 Re z_2 – Imz_1 Imz_2$.
Proof:
Let the two complex numbers be $z_1 = a + bi$ and $z_2 = c + di$, where $a, b, c, d$ are real numbers.
By definition, we have:
$Re(z_1) = a$
$Im(z_1) = b$
$Re(z_2) = c$
$Im(z_2) = d$
Now, let's find the product $z_1 z_2$:
$z_1 z_2 = (a + bi)(c + di)$
$z_1 z_2 = ac + adi + bci + bdi^2$
Since $i^2 = -1$, we substitute this into the expression:
$z_1 z_2 = ac + adi + bci + bd(-1)$
$z_1 z_2 = ac + adi + bci - bd$
Group the real and imaginary terms together:
$z_1 z_2 = (ac - bd) + (ad + bc)i$
The real part of the product $z_1 z_2$ is the term without $i$:
$Re(z_1 z_2) = ac - bd$
This is the Left-Hand Side (LHS) of the identity we need to prove.
Now, let's consider the Right-Hand Side (RHS) of the identity: $Re z_1 Re z_2 – Imz_1 Imz_2$.
Substitute the real and imaginary parts of $z_1$ and $z_2$ into the RHS expression:
$Re z_1 Re z_2 – Imz_1 Imz_2 = (a)(c) - (b)(d)$
$= ac - bd$
So, the RHS is $ac - bd$.
Comparing the LHS and the RHS, we see that:
$LHS = ac - bd$
$RHS = ac - bd$
Therefore, $LHS = RHS$.
$Re (z_1 z_2 ) = Re z_1 Re z_2 – Imz_1 Imz_2$.
Hence, the identity is proved.
Question 3. Reduce $\left( \frac{1}{1 \;-\; 4i} -\frac{2}{1 \;+\; i}\right) \left( \frac{3\;-\;4i}{5\;+\;i} \right)$ to the standard form .
Answer:
Given:
The expression $\left( \frac{1}{1 - 4i} -\frac{2}{1 + i}\right) \left( \frac{3 - 4i}{5 + i} \right)$.
To Reduce:
The given expression to the standard form $a + bi$.
Solution:
We need to reduce the expression $\left( \frac{1}{1 - 4i} -\frac{2}{1 + i}\right) \left( \frac{3 - 4i}{5 + i} \right)$ to the standard form $a + bi$.
Let's first simplify the expression within the first parenthesis: $\left( \frac{1}{1 - 4i} - \frac{2}{1 + i}\right)$.
To subtract the complex fractions, we find a common denominator, which is $(1 - 4i)(1 + i)$.
Denominator $=(1 - 4i)(1 + i) = 1(1) + 1(i) - 4i(1) - 4i(i) = 1 + i - 4i - 4i^2 = 1 - 3i - 4(-1) = 1 - 3i + 4 = 5 - 3i$.
Now, rewrite the fractions with the common denominator:
$\frac{1}{1 - 4i} = \frac{1 \times (1 + i)}{(1 - 4i)(1 + i)} = \frac{1 + i}{5 - 3i}$
$\frac{2}{1 + i} = \frac{2 \times (1 - 4i)}{(1 + i)(1 - 4i)} = \frac{2 - 8i}{5 - 3i}$
Subtract the fractions:
$\frac{1 + i}{5 - 3i} - \frac{2 - 8i}{5 - 3i} = \frac{(1 + i) - (2 - 8i)}{5 - 3i} = \frac{1 + i - 2 + 8i}{5 - 3i} = \frac{(1 - 2) + (1 + 8)i}{5 - 3i} = \frac{-1 + 9i}{5 - 3i}$
To express $\frac{-1 + 9i}{5 - 3i}$ in the form $a + bi$, we multiply the numerator and the denominator by the conjugate of the denominator, which is $5 + 3i$.
$\frac{-1 + 9i}{5 - 3i} \times \frac{5 + 3i}{5 + 3i} = \frac{(-1 + 9i)(5 + 3i)}{(5 - 3i)(5 + 3i)}$
Numerator: $(-1 + 9i)(5 + 3i) = -1(5) + (-1)(3i) + 9i(5) + 9i(3i) = -5 - 3i + 45i + 27i^2 = -5 + 42i + 27(-1) = -5 + 42i - 27 = -32 + 42i$.
Denominator: $(5 - 3i)(5 + 3i) = 5^2 - (3i)^2 = 25 - 9i^2 = 25 - 9(-1) = 25 + 9 = 34$.
So, the first parenthesis simplifies to $\frac{-32 + 42i}{34} = \frac{-32}{34} + \frac{42}{34}i = -\frac{16}{17} + \frac{21}{17}i$.
Next, let's simplify the second parenthesis: $\left( \frac{3 - 4i}{5 + i} \right)$.
Multiply the numerator and the denominator by the conjugate of the denominator, which is $5 - i$.
$\frac{3 - 4i}{5 + i} \times \frac{5 - i}{5 - i} = \frac{(3 - 4i)(5 - i)}{(5 + i)(5 - i)}$
Numerator: $(3 - 4i)(5 - i) = 3(5) + 3(-i) - 4i(5) + (-4i)(-i) = 15 - 3i - 20i + 4i^2 = 15 - 23i + 4(-1) = 15 - 23i - 4 = 11 - 23i$.
Denominator: $(5 + i)(5 - i) = 5^2 - i^2 = 25 - (-1) = 25 + 1 = 26$.
So, the second parenthesis simplifies to $\frac{11 - 23i}{26}$.
Finally, we multiply the simplified results of the two parentheses:
$\left(-\frac{16}{17} + \frac{21}{17}i\right) \left(\frac{11}{26} - \frac{23}{26}i\right)$
Multiply the complex numbers $(a+bi)(c+di) = (ac-bd) + (ad+bc)i$. Here, $a = -\frac{16}{17}$, $b = \frac{21}{17}$, $c = \frac{11}{26}$, $d = -\frac{23}{26}$.
Real part $= ac - bd = \left(-\frac{16}{17}\right) \left(\frac{11}{26}\right) - \left(\frac{21}{17}\right) \left(-\frac{23}{26}\right) = -\frac{176}{442} - \left(-\frac{483}{442}\right) = -\frac{176}{442} + \frac{483}{442} = \frac{-176 + 483}{442} = \frac{307}{442}$.
Imaginary part $= ad + bc = \left(-\frac{16}{17}\right) \left(-\frac{23}{26}\right) + \left(\frac{21}{17}\right) \left(\frac{11}{26}\right) = \frac{368}{442} + \frac{231}{442} = \frac{368 + 231}{442} = \frac{599}{442}$.
The product is $\frac{307}{442} + \frac{599}{442}i$.
The expression is in the standard form $a + bi$, where $a = \frac{307}{442}$ and $b = \frac{599}{442}$.
Thus, the given expression reduced to the standard form is $\mathbf{\frac{307}{442} + \frac{599}{442}i}$.
Question 4. If $x - iy = \sqrt{\frac{a \;-\; ib}{c \;-\; id}}$ prove that (x2 + y2)2 = $\frac{a^{2}\;+\;b^{2}}{c^{2}\;+\;d^{2}}$
Answer:
Given:
The equation $x - iy = \sqrt{\frac{a - ib}{c - id}}$, where $x, y, a, b, c, d$ are real numbers.
To Prove:
$(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$.
Proof:
We are given the equation:
$x - iy = \sqrt{\frac{a - ib}{c - id}}$
Take the modulus of both sides of the equation. The modulus of a complex number $z = p + q i$ is $|z| = \sqrt{p^2 + q^2}$. Also, the modulus of a square root is $|\sqrt{z}| = \sqrt{|z|}$, and the modulus of a quotient is $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$.
Applying the modulus on both sides:
$\left|x - iy\right| = \left|\sqrt{\frac{a - ib}{c - id}}\right|$
... (i)
Using the property $|\sqrt{z}| = \sqrt{|z|}$ on the right side:
$\left|\sqrt{\frac{a - ib}{c - id}}\right| = \sqrt{\left|\frac{a - ib}{c - id}\right|}$
Using the property $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$ on the right side:
$\sqrt{\left|\frac{a - ib}{c - id}\right|} = \sqrt{\frac{|a - ib|}{|c - id|}}$
Now, calculate the modulus of each complex number:
$|x - iy| = \sqrt{x^2 + (-y)^2} = \sqrt{x^2 + y^2}$
$|a - ib| = \sqrt{a^2 + (-b)^2} = \sqrt{a^2 + b^2}$
$|c - id| = \sqrt{c^2 + (-d)^2} = \sqrt{c^2 + d^2}$
Substitute these modulus values back into the equation derived from (i):
$\sqrt{x^2 + y^2} = \sqrt{\frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}}}$
$\sqrt{x^2 + y^2} = \sqrt{\left(\frac{a^2 + b^2}{c^2 + d^2}\right)^{1/2}}$
Using the property $\sqrt[n]{\sqrt[m]{k}} = \sqrt[nm]{k}$: $\sqrt{(...)^{1/2}} = ((...)^{1/2})^{1/2} = (...)^{1/4}$.
$\sqrt{x^2 + y^2} = \left(\frac{a^2 + b^2}{c^2 + d^2}\right)^{1/4}$
Square both sides of the equation:
$(\sqrt{x^2 + y^2})^2 = \left(\left(\frac{a^2 + b^2}{c^2 + d^2}\right)^{1/4}\right)^2$
$x^2 + y^2 = \left(\frac{a^2 + b^2}{c^2 + d^2}\right)^{2/4}$
$x^2 + y^2 = \left(\frac{a^2 + b^2}{c^2 + d^2}\right)^{1/2}$
$x^2 + y^2 = \sqrt{\frac{a^2 + b^2}{c^2 + d^2}}$
Square both sides again to get the expression $(x^2+y^2)^2$:
$(x^2 + y^2)^2 = \left(\sqrt{\frac{a^2 + b^2}{c^2 + d^2}}\right)^2$
$(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$
This is the required identity.
Hence, proved.
Question 5. If $z_1 = 2 \;–\; i$, $z_2 = 1 \;+\; i$, find $\left| \frac{z_{1}\;+\;z_{2}\;+\;1}{z_{1}\;-\;z_{2}\;+\;1} \right|$
Answer:
Given:
The complex numbers $z_1 = 2 - i$ and $z_2 = 1 + i$.
To Find:
The value of $\left| \frac{z_{1}\;+\;z_{2}\;+\;1}{z_{1}\;-\;z_{2}\;+\;1} \right|$.
Solution:
We need to find the modulus of the complex expression $\frac{z_{1}\;+\;z_{2}\;+\;1}{z_{1}\;-\;z_{2}\;+\;1}$.
First, calculate the numerator $z_1 + z_2 + 1$:
$z_1 + z_2 + 1 = (2 - i) + (1 + i) + 1$
$= (2 + 1 + 1) + (-i + i)$
$= 4 + 0i = 4$
Next, calculate the denominator $z_1 - z_2 + 1$:
$z_1 - z_2 + 1 = (2 - i) - (1 + i) + 1$
$= (2 - 1 + 1) + (-i - i)$
$= 2 + (-2i) = 2 - 2i$
Now, substitute these values into the expression:
$\frac{z_{1}\;+\;z_{2}\;+\;1}{z_{1}\;-\;z_{2}\;+\;1} = \frac{4}{2 - 2i}$
To simplify this complex fraction, multiply the numerator and denominator by the conjugate of the denominator. The conjugate of $2 - 2i$ is $2 + 2i$.
$\frac{4}{2 - 2i} = \frac{4}{2 - 2i} \times \frac{2 + 2i}{2 + 2i}$
Numerator: $4(2 + 2i) = 8 + 8i$
Denominator: $(2 - 2i)(2 + 2i) = (2)^2 + (-2)^2 = 4 + 4 = 8$
So, the complex number is $\frac{8 + 8i}{8} = \frac{8}{8} + \frac{8i}{8} = 1 + i$.
Now, we need to find the modulus of $1 + i$.
The modulus of a complex number $a + bi$ is $\sqrt{a^2 + b^2}$.
For $1 + i$, the real part is $a = 1$ and the imaginary part is $b = 1$.
$\left| \frac{z_{1}\;+\;z_{2}\;+\;1}{z_{1}\;-\;z_{2}\;+\;1} \right| = |1 + i| = \sqrt{(1)^2 + (1)^2}$
$= \sqrt{1 + 1}$
$= \sqrt{2}$
Thus, the value of $\left| \frac{z_{1}\;+\;z_{2}\;+\;1}{z_{1}\;-\;z_{2}\;+\;1} \right|$ is $\mathbf{\sqrt{2}}$.
Question 6. If $a + ib = \frac{(x\;+\;i)^{2}}{2x^{2}\;+\;1}$ prove that $a^2 + b^2 = \frac{(x^2\;+\;1)^{2}}{(2x^{2}\;+\;1)^2}$
Answer:
Given:
The complex number equation $a + ib = \frac{(x\;+\;i)^{2}}{2x^{2}\;+\;1}$, where $a, b, x$ are real numbers and $i = \sqrt{-1}$.
To Prove:
$a^2 + b^2 = \frac{(x^2\;+\;1)^{2}}{(2x^{2}\;+\;1)^2}$
Proof:
We are given the equation:
$a + ib = \frac{(x\;+\;i)^{2}}{2x^{2}\;+\;1}$
First, let's expand the numerator $(x+i)^2$ using the formula $(p+q)^2 = p^2 + 2pq + q^2$ where $p=x$ and $q=i$:
$(x+i)^2 = x^2 + 2(x)(i) + i^2$
Since $i^2 = -1$, we have:
$(x+i)^2 = x^2 + 2xi - 1$
Rearranging the terms to separate the real and imaginary parts:
$(x+i)^2 = (x^2 - 1) + (2x)i$
Now substitute this back into the given equation:
$a + ib = \frac{(x^2 - 1) + 2xi}{2x^{2}\;+\;1}$
Since the denominator $2x^2+1$ is a real number (assuming x is real, $2x^2 \ge 0$, so $2x^2+1 \ge 1 \neq 0$), we can separate the real and imaginary parts of the right-hand side:
$a + ib = \frac{x^2 - 1}{2x^{2}\;+\;1} + \frac{2x}{2x^{2}\;+\;1}i$
By comparing the real and imaginary parts of both sides of the equation, we get the expressions for $a$ and $b$:
$a = \frac{x^2 - 1}{2x^{2}\;+\;1}$
$b = \frac{2x}{2x^{2}\;+\;1}$
We need to find $a^2 + b^2$. Square the expressions for $a$ and $b$:
$a^2 = \left(\frac{x^2 - 1}{2x^{2}\;+\;1}\right)^2 = \frac{(x^2 - 1)^2}{(2x^{2}\;+\;1)^2}$
$b^2 = \left(\frac{2x}{2x^{2}\;+\;1}\right)^2 = \frac{(2x)^2}{(2x^{2}\;+\;1)^2} = \frac{4x^2}{(2x^{2}\;+\;1)^2}$
Now add $a^2$ and $b^2$:
$a^2 + b^2 = \frac{(x^2 - 1)^2}{(2x^{2}\;+\;1)^2} + \frac{4x^2}{(2x^{2}\;+\;1)^2}$
Since the denominators are the same, we can add the numerators:
$a^2 + b^2 = \frac{(x^2 - 1)^2 + 4x^2}{(2x^{2}\;+\;1)^2}$
Expand the term $(x^2 - 1)^2$ in the numerator using $(p-q)^2 = p^2 - 2pq + q^2$, where $p=x^2$ and $q=1$:
$(x^2 - 1)^2 = (x^2)^2 - 2(x^2)(1) + 1^2 = x^4 - 2x^2 + 1$
Substitute this back into the numerator of $a^2 + b^2$:
Numerator $= (x^4 - 2x^2 + 1) + 4x^2$
Combine the like terms in the numerator:
Numerator $= x^4 + (-2x^2 + 4x^2) + 1$
Numerator $= x^4 + 2x^2 + 1$
Notice that the numerator $x^4 + 2x^2 + 1$ is a perfect square trinomial, $(x^2)^2 + 2(x^2)(1) + 1^2$, which is equal to $(x^2 + 1)^2$.
Numerator $= (x^2 + 1)^2$
Substitute this back into the expression for $a^2 + b^2$:
$a^2 + b^2 = \frac{(x^2 + 1)^2}{(2x^{2}\;+\;1)^2}$
This is the expression we were required to prove.
Alternate Approach (Using Modulus):
We are given $a + ib = \frac{(x\;+\;i)^{2}}{2x^{2}\;+\;1}$.
We know that for a complex number $z = a + ib$, $|z| = \sqrt{a^2 + b^2}$, and $|z|^2 = a^2 + b^2$.
Also, for complex numbers $z_1$ and $z_2$, $|z_1 z_2| = |z_1| |z_2|$ and $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$ (where $z_2 \neq 0$).
Let $z = a + ib$. Then $|z|^2 = a^2 + b^2$.
$|z|^2 = \left|\frac{(x\;+\;i)^{2}}{2x^{2}\;+\;1}\right|^2$
Using the properties of modulus:
$|z|^2 = \frac{|(x\;+\;i)^{2}|^2}{|2x^{2}\;+\;1|^2}$
$|z|^2 = \frac{|x\;+\;i|^2 \cdot |x\;+\;i|^2}{|2x^{2}\;+\;1|^2}$
$|z|^2 = \frac{(|x\;+\;i|)^2 \cdot (|x\;+\;i|)^2}{(|2x^{2}\;+\;1|)^2}$
$|z|^2 = \frac{(|x\;+\;i|)^4}{(|2x^{2}\;+\;1|)^2}$
Alternatively, using $|z^n| = |z|^n$:
$|z|^2 = \frac{|x\;+\;i|^2}{|2x^{2}\;+\;1|^2}$
For a complex number $w = c + id$, $|w| = \sqrt{c^2 + d^2}$, so $|w|^2 = c^2 + d^2$.
For $x+i$, the real part is $x$ and the imaginary part is 1. So, $|x+i|^2 = x^2 + 1^2 = x^2 + 1$.
For $2x^2+1$, this is a real number. The modulus of a real number is its absolute value. Since $2x^2+1 \ge 1$, $|2x^2+1| = 2x^2+1$. Thus, $|2x^2+1|^2 = (2x^2+1)^2$.
Substitute these values back into the equation for $|z|^2$:
$a^2 + b^2 = \frac{(x^2 + 1)^2}{(2x^{2}\;+\;1)^2}$
This matches the expression we needed to prove.
Hence, proved.
Question 7. Let $z_1 = 2 \;–\; i$ , $z_2 = –2 + i$. Find
(i) $Re \left(\frac{z_{1}z_{2}}{\overline{z_{1}}} \right)$
(ii) $Im \left(\frac{1}{z_{1}\overline{z_{1}}} \right)$
Answer:
Given:
Complex numbers $z_1 = 2 - i$ and $z_2 = -2 + i$.
To Find:
(i) The real part of $\frac{z_{1}z_{2}}{\overline{z_{1}}}$.
(ii) The imaginary part of $\frac{1}{z_{1}\overline{z_{1}}}$.
Solution:
First, we find the conjugate of $z_1$, denoted by $\overline{z_{1}}$.
If $z_1 = 2 - i$, then $\overline{z_{1}} = 2 + i$.
(i) Find $Re \left(\frac{z_{1}z_{2}}{\overline{z_{1}}} \right)$:
We first calculate the product $z_1 z_2$:
$z_1 z_2 = (2 - i)(-2 + i)$
Using the distributive property (FOIL method):
$z_1 z_2 = (2)(-2) + (2)(i) + (-i)(-2) + (-i)(i)$
$z_1 z_2 = -4 + 2i + 2i - i^2$
Since $i^2 = -1$:
$z_1 z_2 = -4 + 4i - (-1)$
$z_1 z_2 = -4 + 4i + 1$
$z_1 z_2 = -3 + 4i$
Now, we compute the fraction $\frac{z_{1}z_{2}}{\overline{z_{1}}}$:
$\frac{z_{1}z_{2}}{\overline{z_{1}}} = \frac{-3 + 4i}{2 + i}$
To simplify this complex fraction, we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of $2+i$ is $2-i$.
$\frac{-3 + 4i}{2 + i} \times \frac{2 - i}{2 - i} = \frac{(-3 + 4i)(2 - i)}{(2 + i)(2 - i)}$
Calculate the numerator:
$(-3 + 4i)(2 - i) = (-3)(2) + (-3)(-i) + (4i)(2) + (4i)(-i)$
$= -6 + 3i + 8i - 4i^2$
$= -6 + 11i - 4(-1)$
$= -6 + 11i + 4$
$= -2 + 11i$
Calculate the denominator:
$(2 + i)(2 - i) = 2^2 - i^2 = 4 - (-1) = 4 + 1 = 5$
So, the fraction is:
$\frac{-2 + 11i}{5} = -\frac{2}{5} + \frac{11}{5}i$
This is in the form $a+bi$, where the real part is $a = -\frac{2}{5}$ and the imaginary part is $b = \frac{11}{5}$.
The real part of $\frac{z_{1}z_{2}}{\overline{z_{1}}}$ is the real part of $-\frac{2}{5} + \frac{11}{5}i$.
Thus, $Re \left(\frac{z_{1}z_{2}}{\overline{z_{1}}} \right) = -\frac{2}{5}$.
(ii) Find $Im \left(\frac{1}{z_{1}\overline{z_{1}}} \right)$:
We first calculate the product $z_{1}\overline{z_{1}}$.
$z_1 \overline{z_{1}} = (2 - i)(2 + i)$
Using the identity $(a-b)(a+b) = a^2 - b^2$:
$z_1 \overline{z_{1}} = 2^2 - i^2$
$z_1 \overline{z_{1}} = 4 - (-1)$
$z_1 \overline{z_{1}} = 4 + 1 = 5$
Now, we compute the fraction $\frac{1}{z_{1}\overline{z_{1}}}$:
$\frac{1}{z_{1}\overline{z_{1}}} = \frac{1}{5}$
This is a real number. To express this in the form $a+bi$, we can write it as $\frac{1}{5} + 0i$.
Here, the real part is $a = \frac{1}{5}$ and the imaginary part is $b = 0$.
The imaginary part of $\frac{1}{z_{1}\overline{z_{1}}}$ is the imaginary part of $\frac{1}{5} + 0i$.
Thus, $Im \left(\frac{1}{z_{1}\overline{z_{1}}} \right) = 0$.
Question 8. Find the real numbers x and y if $(x \;–\; iy) (3 + 5i)$ is the conjugate of $–6 \;–\; 24i$.
Answer:
Given:
The complex number $(x - iy) (3 + 5i)$ is the conjugate of $-6 - 24i$, where $x$ and $y$ are real numbers.
To Find:
The real numbers $x$ and $y$.
Solution:
We are given that $(x - iy) (3 + 5i)$ is the conjugate of $-6 - 24i$.
First, let's find the conjugate of $-6 - 24i$. The conjugate of a complex number $a + bi$ is $a - bi$.
The conjugate of $-6 - 24i$ is $-6 - (-24i) = -6 + 24i$.
Now, we set the given expression equal to this conjugate:
$(x - iy) (3 + 5i) = -6 + 24i$
Next, we expand the left side of the equation by multiplying the two complex numbers:
$(x - iy)(3 + 5i) = x(3) + x(5i) - iy(3) - iy(5i)$
$= 3x + 5xi - 3yi - 5yi^2$
Since $i^2 = -1$, we substitute this into the expression:
$= 3x + 5xi - 3yi - 5y(-1)$
$= 3x + 5xi - 3yi + 5y$
Group the real and imaginary terms together:
$= (3x + 5y) + (5x - 3y)i$
Now, the equation is:
$(3x + 5y) + (5x - 3y)i = -6 + 24i$
For two complex numbers to be equal, their real parts must be equal and their imaginary parts must be equal.
Equating the real parts:
$3x + 5y = -6$
... (1)
Equating the imaginary parts:
$5x - 3y = 24$
... (2)
We now have a system of two linear equations. We can solve this system using the elimination method.
Multiply equation (1) by 3 and equation (2) by 5 to eliminate $y$:
$3 \times (3x + 5y) = 3 \times (-6) \Rightarrow 9x + 15y = -18$
$5 \times (5x - 3y) = 5 \times (24) \Rightarrow 25x - 15y = 120$
Add the two resulting equations:
$(9x + 15y) + (25x - 15y) = -18 + 120$
$9x + 25x + 15y - 15y = 102$
$34x = 102$
Solve for $x$:
$x = \frac{102}{34}$
$x = 3$
Now, substitute the value of $x = 3$ into equation (1):
$3x + 5y = -6$
$3(3) + 5y = -6$
$9 + 5y = -6$
$5y = -6 - 9$
$5y = -15$
Solve for $y$:
$y = \frac{-15}{5}$
$y = -3$
Thus, the real numbers are $\mathbf{x = 3}$ and $\mathbf{y = -3}$.
Question 9. Find the modulus of $\frac{1 \;+\; i}{1 \;-\; i} - \frac{1 \;-\; i}{1 \;+\; i}$
Answer:
To Find:
The modulus of $\frac{1 \;+\; i}{1 \;-\; i} - \frac{1 \;-\; i}{1 \;+\; i}$.
Solution:
Let the given expression be $Z$.
$Z = \frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}$
First, simplify the term $\frac{1 + i}{1 - i}$. Multiply the numerator and denominator by the conjugate of the denominator, which is $1 + i$.
$\frac{1 + i}{1 - i} = \frac{1 + i}{1 - i} \times \frac{1 + i}{1 + i}$
$= \frac{(1 + i)^2}{1^2 - i^2}$
Using the formula $(a+b)^2 = a^2 + 2ab + b^2$ and $i^2 = -1$:
$= \frac{1^2 + 2(1)(i) + i^2}{1 - (-1)}$
$= \frac{1 + 2i - 1}{1 + 1}$
$= \frac{2i}{2}$
$= i$
Next, simplify the term $\frac{1 - i}{1 + i}$. Multiply the numerator and denominator by the conjugate of the denominator, which is $1 - i$.
$\frac{1 - i}{1 + i} = \frac{1 - i}{1 + i} \times \frac{1 - i}{1 - i}$
$= \frac{(1 - i)^2}{1^2 - i^2}$
Using the formula $(a-b)^2 = a^2 - 2ab + b^2$ and $i^2 = -1$:
$= \frac{1^2 - 2(1)(i) + i^2}{1 - (-1)}$
$= \frac{1 - 2i - 1}{1 + 1}$
$= \frac{-2i}{2}$
$= -i$
Now, substitute these simplified terms back into the expression for $Z$:
$Z = (i) - (-i)$
$Z = i + i$
$Z = 2i$
The complex number is $Z = 2i$. To find its modulus, we write it in the standard form $a + bi$, which is $0 + 2i$.
The modulus of a complex number $a + bi$ is given by the formula $|a + bi| = \sqrt{a^2 + b^2}$.
For $Z = 0 + 2i$, we have $a = 0$ and $b = 2$.
The modulus is $|Z| = |0 + 2i| = \sqrt{(0)^2 + (2)^2}$
$= \sqrt{0 + 4}$
$= \sqrt{4}$
$= 2$
Thus, the modulus of $\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}$ is $\mathbf{2}$.
Question 10. If $(x + iy)^3 = u + iv$, then show that $\frac{u}{x} + \frac{v}{y} = 4 (x^2 - y^2)$
Answer:
Given:
The equation $(x + iy)^3 = u + iv$, where $x, y, u, v$ are real numbers.
To Show:
$\frac{u}{x} + \frac{v}{y} = 4 (x^2 - y^2)$, assuming $x \neq 0$ and $y \neq 0$ for the terms $\frac{u}{x}$ and $\frac{v}{y}$ to be defined.
Proof:
We are given the equation $(x + iy)^3 = u + iv$.
Let's expand the left side of the equation using the binomial formula $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.
Here, $a = x$ and $b = iy$.
$(x + iy)^3 = x^3 + 3x^2(iy) + 3x(iy)^2 + (iy)^3$
Simplify the terms involving $i$:
$= x^3 + 3ix^2y + 3x(i^2y^2) + i^3y^3$
Substitute the values $i^2 = -1$ and $i^3 = -i$:
$= x^3 + 3ix^2y + 3x(-1)y^2 + (-i)y^3$
$= x^3 + 3ix^2y - 3xy^2 - iy^3$
Group the real and imaginary parts:
$(x + iy)^3 = (x^3 - 3xy^2) + i(3x^2y - y^3)$
We are given that $(x + iy)^3 = u + iv$.
By equating the real and imaginary parts of $(x + iy)^3$ and $u + iv$, we get:
$u = x^3 - 3xy^2$
(Real part)
$v = 3x^2y - y^3$
(Imaginary part)
Now, we need to form the terms $\frac{u}{x}$ and $\frac{v}{y}$. Since these terms appear in the statement to be proved, we assume $x \neq 0$ and $y \neq 0$.
Divide $u$ by $x$:
$\frac{u}{x} = \frac{x^3 - 3xy^2}{x}$
Factor out $x$ from the numerator:
$\frac{u}{x} = \frac{x(x^2 - 3y^2)}{x}$
Cancel $x$ (since $x \neq 0$):
$\frac{u}{x} = x^2 - 3y^2$
... (1)
Divide $v$ by $y$:
$\frac{v}{y} = \frac{3x^2y - y^3}{y}$
Factor out $y$ from the numerator:
$\frac{v}{y} = \frac{y(3x^2 - y^2)}{y}$
Cancel $y$ (since $y \neq 0$):
$\frac{v}{y} = 3x^2 - y^2$
... (2)
Now, add equations (1) and (2) to get the left side of the identity we need to show:
$\frac{u}{x} + \frac{v}{y} = (x^2 - 3y^2) + (3x^2 - y^2)$
Remove the parentheses and group like terms:
$= x^2 - 3y^2 + 3x^2 - y^2$
$= (x^2 + 3x^2) + (-3y^2 - y^2)$
$= 4x^2 - 4y^2$
Factor out 4:
$= 4(x^2 - y^2)$
This is the right side of the identity we were asked to show.
Therefore, we have shown that $\frac{u}{x} + \frac{v}{y} = 4 (x^2 - y^2)$.
Hence, proved.
Question 11. If $α$ and $β$ are different complex numbers with $|β| =1$, then find $\left| \frac{\beta\;-\;\alpha}{1\;-\;\overline{\alpha}\beta} \right|$
Answer:
Given:
$\alpha$ and $\beta$ are different complex numbers ($\alpha \neq \beta$), and $|\beta| = 1$.
To Find:
The value of $\left| \frac{\beta\;-\;\alpha}{1\;-\;\overline{\alpha}\beta} \right|$.
Solution:
Let the given complex expression be $Z = \frac{\beta\;-\;\alpha}{1\;-\;\overline{\alpha}\beta}$. We need to find the modulus $|Z|$.
Using the property that the modulus of a quotient is the quotient of the moduli, i.e., $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$ (provided $|z_2| \neq 0$), we have:
$|Z| = \frac{|\beta - \alpha|}{|1 - \overline{\alpha}\beta|}$
To evaluate this, we can calculate the square of the modulus of the numerator and the denominator separately, using the property that for any complex number $z$, $|z|^2 = z\overline{z}$.
Consider the square of the modulus of the numerator:
$|\beta - \alpha|^2 = (\beta - \alpha) \overline{(\beta - \alpha)}$
Using the property that the conjugate of a difference is the difference of the conjugates ($\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$), we get:
$|\beta - \alpha|^2 = (\beta - \alpha)(\overline{\beta} - \overline{\alpha})$
Expand this product:
$|\beta - \alpha|^2 = \beta\overline{\beta} - \beta\overline{\alpha} - \alpha\overline{\beta} + \alpha\overline{\alpha}$
Using the property that $z\overline{z} = |z|^2$, this becomes:
$|\beta - \alpha|^2 = |\beta|^2 - \beta\overline{\alpha} - \alpha\overline{\beta} + |\alpha|^2$
We are given that $|\beta| = 1$. Substituting $|\beta|^2 = 1^2 = 1$:
$|\beta - \alpha|^2 = 1 - \beta\overline{\alpha} - \alpha\overline{\beta} + |\alpha|^2$
... (1)
Now, consider the square of the modulus of the denominator:
$|1 - \overline{\alpha}\beta|^2 = (1 - \overline{\alpha}\beta) \overline{(1 - \overline{\alpha}\beta)}$
Using conjugate properties: $\overline{1} = 1$, $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$, and $\overline{\overline{z}} = z$:
The conjugate of the denominator is $\overline{(1 - \overline{\alpha}\beta)} = \overline{1} - \overline{(\overline{\alpha}\beta)} = 1 - \overline{\overline{\alpha}}\overline{\beta} = 1 - \alpha\overline{\beta}$.
So, $|1 - \overline{\alpha}\beta|^2 = (1 - \overline{\alpha}\beta)(1 - \alpha\overline{\beta})$
Expand this product:
$|1 - \overline{\alpha}\beta|^2 = 1 \cdot 1 + 1 \cdot (-\alpha\overline{\beta}) - (\overline{\alpha}\beta) \cdot 1 - (\overline{\alpha}\beta)(-\alpha\overline{\beta})$
$= 1 - \alpha\overline{\beta} - \overline{\alpha}\beta + \overline{\alpha}\beta\alpha\overline{\beta}$
Rearrange the terms in the last part:
$= 1 - \alpha\overline{\beta} - \overline{\alpha}\beta + (\overline{\alpha}\alpha)(\beta\overline{\beta})$
Using the property $z\overline{z} = |z|^2$, this becomes:
$= 1 - \alpha\overline{\beta} - \overline{\alpha}\beta + |\alpha|^2 |\beta|^2$
Using the given condition $|\beta| = 1$, so $|\beta|^2 = 1$:
$= 1 - \alpha\overline{\beta} - \overline{\alpha}\beta + |\alpha|^2 (1)$
$|1 - \overline{\alpha}\beta|^2 = 1 - \alpha\overline{\beta} - \overline{\alpha}\beta + |\alpha|^2$
... (2)
Now, we compare the expressions for the square of the modulus of the numerator and the denominator (from equation (1) and equation (2)).
We see that $|\beta - \alpha|^2 = |1 - \overline{\alpha}\beta|^2$.
Before calculating the ratio, we need to ensure the denominator is not zero.
Since $\alpha \neq \beta$ and $|\beta|=1$, the denominator $1 - \overline{\alpha}\beta$ must be non-zero.
If $1 - \overline{\alpha}\beta = 0$, then $\overline{\alpha}\beta = 1$.
Taking the modulus on both sides:
$|\overline{\alpha}\beta| = |1|$
Using $|\overline{\alpha}||\beta| = 1$ and $|\overline{\alpha}|=|\alpha|$ and $|\beta|=1$:
$|\alpha| \cdot 1 = 1$
This implies $|\alpha| = 1$.
If $|\alpha|=1$ and $\overline{\alpha}\beta=1$, then $\beta = \frac{1}{\overline{\alpha}}$.
Since $|\alpha|=1$, we have $\alpha\overline{\alpha} = |\alpha|^2 = 1$, which means $\overline{\alpha} = \frac{1}{\alpha}$.
Substituting this into the expression for $\beta$:
$\beta = \frac{1}{\overline{\alpha}} = \frac{1}{1/\alpha} = \alpha$
This result $\beta = \alpha$ contradicts the given condition that $\alpha$ and $\beta$ are different complex numbers ($\alpha \neq \beta$).
Therefore, the denominator $1 - \overline{\alpha}\beta$ cannot be 0.
Since the denominator is non-zero, we can proceed with the division of the squared moduli:
$|Z|^2 = \frac{|\beta - \alpha|^2}{|1 - \overline{\alpha}\beta|^2} = \frac{1 - \beta\overline{\alpha} - \alpha\overline{\beta} + |\alpha|^2}{1 - \alpha\overline{\beta} - \overline{\alpha}\beta + |\alpha|^2}$
The numerator and the denominator are identical, and since the denominator is non-zero, their ratio is 1.
$|Z|^2 = 1$
Taking the square root of both sides (the modulus must be non-negative):
$|Z| = \sqrt{1} = 1$
Thus, the value of the given expression is 1.
$\left| \frac{\beta\;-\;\alpha}{1\;-\;\overline{\alpha}\beta} \right| = \mathbf{1}$.
Question 12. Find the number of non-zero integral solutions of the equation $|1 - i|^x=2^x$ .
Answer:
Given:
The equation $|1 - i|^x = 2^x$.
To Find:
The number of non-zero integral solutions for $x$ in the equation $|1 - i|^x = 2^x$.
Solution:
We are given the equation $|1 - i|^x = 2^x$.
First, we need to find the modulus of the complex number $1 - i$.
The modulus of a complex number $a + bi$ is given by $|a + bi| = \sqrt{a^2 + b^2}$.
For the complex number $1 - i$, the real part is $a = 1$ and the imaginary part is $b = -1$.
So, the modulus of $1 - i$ is:
$|1 - i| = \sqrt{(1)^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2}$.
Now, substitute this value back into the given equation:
$(\sqrt{2})^x = 2^x$
Rewrite $\sqrt{2}$ as a power of 2:
$\sqrt{2} = 2^{1/2}$
Substitute this into the equation:
$(2^{1/2})^x = 2^x$
Using the exponent rule $(a^m)^n = a^{mn}$, we simplify the left side:
$2^{(1/2) \times x} = 2^x$
$2^{x/2} = 2^x$
Since the bases are equal (and positive and not equal to 1), the exponents must be equal:
$\frac{x}{2} = x$
To solve for $x$, multiply both sides by 2:
$x = 2x$
Subtract $x$ from both sides:
$0 = 2x - x$
$0 = x$
The only solution to the equation $|1 - i|^x = 2^x$ is $x = 0$.
The question asks for the number of non-zero integral solutions.
Since the only solution we found is $x = 0$, and 0 is not a non-zero integer, there are no non-zero integral solutions.
The number of non-zero integral solutions is $\mathbf{0}$.
Question 13. If $(a + ib) (c + id) (e + if) (g + ih) = A + iB$, then show that
$(a^2 + b^2 ) (c^2 + d^2 ) (e^2 + f^2 ) (g^2 + h^2 ) = A^2 + B^2$
Answer:
Given:
The equation $(a + ib) (c + id) (e + if) (g + ih) = A + iB$, where $a, b, c, d, e, f, g, h, A, B$ are real numbers.
To Show:
$(a^2 + b^2 ) (c^2 + d^2 ) (e^2 + f^2 ) (g^2 + h^2 ) = A^2 + B^2$.
Proof:
We are given the equation:
$(a + ib) (c + id) (e + if) (g + ih) = A + iB$
Take the modulus of both sides of the equation. The modulus of a complex number $z = x + yi$ is $|z| = \sqrt{x^2 + y^2}$. Also, the modulus of a product of complex numbers is equal to the product of their moduli, i.e., $|z_1 z_2 ... z_n| = |z_1| |z_2| ... |z_n|$.
Applying the modulus on both sides:
$|(a + ib) (c + id) (e + if) (g + ih)| = |A + iB|$
Using the property of the modulus of a product:
$|a + ib| \cdot |c + id| \cdot |e + if| \cdot |g + ih| = |A + iB|$
Now, calculate the modulus of each complex number:
$|a + ib| = \sqrt{a^2 + b^2}$
$|c + id| = \sqrt{c^2 + d^2}$
$|e + if| = \sqrt{e^2 + f^2}$
$|g + ih| = \sqrt{g^2 + h^2}$
$|A + iB| = \sqrt{A^2 + B^2}$
Substitute these modulus values back into the equation:
$\sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2} \cdot \sqrt{e^2 + f^2} \cdot \sqrt{g^2 + h^2} = \sqrt{A^2 + B^2}$
Square both sides of the equation:
$\left(\sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2} \cdot \sqrt{e^2 + f^2} \cdot \sqrt{g^2 + h^2}\right)^2 = \left(\sqrt{A^2 + B^2}\right)^2$
Using the property $(\sqrt{x})^2 = x$ and $(xyzw)^2 = x^2y^2z^2w^2$, we have:
$(\sqrt{a^2 + b^2})^2 (\sqrt{c^2 + d^2})^2 (\sqrt{e^2 + f^2})^2 (\sqrt{g^2 + h^2})^2 = A^2 + B^2$
$(a^2 + b^2) (c^2 + d^2) (e^2 + f^2) (g^2 + h^2) = A^2 + B^2$
This is the required identity.
Hence, proved.
Question 14. $\left( \frac{1 \;+\; i}{1 \;-\; i} \right)^{m} = 1$, then find the least positive integral value of m.
Answer:
Given:
The equation $\left( \frac{1 \;+\; i}{1 \;-\; i} \right)^{m} = 1$, where $m$ is a positive integer.
To Find:
The least positive integral value of $m$.
Solution:
We are given the equation $\left( \frac{1 \;+\; i}{1 \;-\; i} \right)^{m} = 1$.
First, simplify the complex number inside the parenthesis: $\frac{1 + i}{1 - i}$.
Multiply the numerator and the denominator by the conjugate of the denominator, which is $1 + i$:
$\frac{1 + i}{1 - i} = \frac{1 + i}{1 - i} \times \frac{1 + i}{1 + i}$
$= \frac{(1 + i)^2}{(1)^2 - (i)^2}$
Expand the numerator and simplify the denominator:
$= \frac{1^2 + 2(1)(i) + i^2}{1 - (-1)}$
Since $i^2 = -1$, this becomes:
$= \frac{1 + 2i - 1}{1 + 1}$
$= \frac{2i}{2}$
$= i$
Now, substitute the simplified value back into the given equation:
$(i)^{m} = 1$
We need to find the least positive integer $m$ such that $i^m = 1$.
Let's list the first few positive integral powers of $i$:
$i^1 = i$
$i^2 = -1$
$i^3 = -i$
$i^4 = i^2 \times i^2 = (-1) \times (-1) = 1$
$i^5 = i^4 \times i = 1 \times i = i$
The powers of $i$ repeat in a cycle of 4: $i, -1, -i, 1$.
The equation $i^m = 1$ is satisfied when the exponent $m$ is a positive multiple of 4.
The positive integral values of $m$ for which $i^m = 1$ are $4, 8, 12, 16, \dots$.
The least of these positive integral values is 4.
Thus, the least positive integral value of $m$ is $\mathbf{4}$.